Solutions of 2-D Bratu Equations Using Lie Group Method

نویسندگان

چکیده

In this study, the nonlinear term in two-dimensional Bratu equation has been replaced by its Taylor’s expansion. Hence, resulting partial differential studied using Lie group method. The symmetry reductions that reduce equations to ordinary are determined theory. resultant were analytically solved, and solutions obtained closed form for some specified parameter values, while others solved numerically. We investigated effect of increasing value coefficient on behavior solution results, graphically presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New perturbation-iteration solutions for Bratu-type equations

Perturbation–iteration theory is systematically generated for both linear and nonlinear second-order differential equations and applied to Bratu-type equations. Different perturbation–iteration algorithms depending upon the number of Taylor expansion terms are proposed. Using the iteration formulas derived using different perturbation–iteration algorithms, new solutions of Bratu-type equations ...

متن کامل

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Dual Solutions for Nonlinear Flow Using Lie Group Analysis

`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method h...

متن کامل

Lie Group Classifications and Stability of Exact Solutions for Multidimensional Landau-Lifshitz Equations

In this paper, based on classical Lie group method, we study multi-dimensional Landau-Lifshitz equation, and get its infinitesimal generator, symmetry group and new solutions. In particular, we build the connection between new exact solutions and old exact solutions. At the same time, we also prove that the initial boundary value condition of the three-dimensional Landau-Lifshitz equation admit...

متن کامل

The Chebyshev Wavelet Method for Solving Fractional Integral and Differential Equations of Bratu-type ⋆

By using the integral operational matrix and the product operation matrix of the Chebyshev wavelet, a class of nonlinear fractional integral-differential equations of Bratu-type is transformed into nonlinear algebraic equations, which makes the solution process and calculation more simple. At the same time, reliable approaches for uniqueness and convergence of the Chebyshev wavelet method are d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14122635